




What Readers Are Saying about

Practical Programming

I wish I could go back in time and give this book to my 10-year-old self when I

first learned programming! It’s so much more engaging, practical, and accessible

than the dry introductory programming books that I tried (and often failed) to

comprehend as a kid. I love the authors’ hands-on approach of mixing explanations

with code snippets that students can type into the Python prompt.

➤ Philip Guo

Creator of Online Python Tutor (www.pythontutor.com), Assistant Professor, Depart-

ment of Cognitive Science, UCSD

Practical Programming delivers just what it promises: a clear, readable, usable

introduction to programming for beginners. This isn’t just a guide to hacking

together programs. The book provides foundations to lifelong programming skills:

a crisp, consistent, and visual model of memory and execution and a design recipe

that will help readers produce quality software.

➤ Steven Wolfman

Professor of Teaching, Department of Computer Science, University of British

Columbia
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This excellent text reflects the authors’ many years of experience teaching Python

to beginning students.  Topics are presented so that each leads naturally to the

next, and common novice errors and misconceptions are explicitly addressed. The

exercises at the end of each chapter invite interested students to explore computer

science and programming language topics.

➤ Kathleen Freeman

Director of Undergraduate Studies, Department of Computer and Information
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Preface

This book uses the Python programming language to teach introductory

computer science topics and a handful of useful applications. You’ll certainly

learn a fair amount of Python as you work through this book, but along the

way you’ll also learn about issues that every programmer needs to know:

ways to approach a problem and break it down into parts, how and why to

document your code, how to test your code to help ensure your program does

what you want it to, and more.

We chose Python for several reasons:

• It is free and well documented. In fact, Python is one of the largest and

best-organized open source projects going.

• It runs everywhere. The reference implementation, written in C, is used

on everything from cell phones to supercomputers, and it’s supported by

professional-quality installers for Windows, macOS, and Linux.

• It has a clean syntax. Yes, every language makes this claim, but during

the several years that we have been using it at the University of Toronto,

we have found that students make noticeably fewer “punctuation” mistakes

with Python than with C-like languages.

• It is relevant. Thousands of companies use it every day: it is one of the

languages used at Google, Industrial Light & Magic uses it extensively,

and large portions of the game EVE Online are written in Python. It is

also widely used by academic research groups.

• It is well supported by tools. Legacy editors like vi and Emacs all have

Python editing modes, and several professional-quality IDEs are available.

(We use IDLE, the free development environment that comes with a

standard Python installation.)
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Our Approach

We have organized the book into two parts. The first covers fundamental pro-

gramming ideas: how to store and manipulate information (numbers, text, lists,

sets, dictionaries, and files), how to control the flow of execution (conditionals

and loops), how to organize code (functions and modules), how to ensure your

code works (testing and debugging), and how to plan your program (algorithms).

The second part of the book consists of more or less independent chapters

on more advanced topics that assume all the basic material has been covered.

The first of these chapters shows how to create and manage your own types

of information. It introduces object-oriented concepts such as encapsulation,

inheritance, and polymorphism. The other chapters cover testing, databases,

and graphical user interface construction.

Further Reading

Lots of other good books on Python programming exist. Some are accessible

to novices, such as Introduction to Computing and Programming in Python: A

Multimedia Approach [GE13] and Python Programming: An Introduction to

Computer Science [Zel03]; others are for anyone with any previous programming

experience (How to Think Like a Computer Scientist: Learning with Python

[DEM02], Object-Oriented Programming in Python [GL07], and Learning Python

[Lut13]). You may also want to take a look at Python Education Special Interest

Group (EDU-SIG) [Pyt11], the special interest group for educators using Python.

Python Resources

Information about a variety of Python books and other resources is available at

http://wiki.python.org/moin/FrontPage.

After you have a good grasp of programming in Python, we recommend that

you learn a second programming language. There are many possibilities, such

as well-known languages like C, Java, C#, and Ruby. Python is similar in

concept to those languages. However, you will likely learn more and become

a better programmer if you learn a programming language that requires a

different mindset, such as Racket,1 Erlang,2 or Haskell.3 In any case, we

strongly recommend learning a second programming language.

1. See http://www.ccs.neu.edu/home/matthias/HtDP2e/index.html.
2. See http://learnyousomeerlang.com.

3. See http://learnyouahaskell.com.

Preface • xiv
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What You’ll See

In this book, we’ll do the following:

• We’ll show you how to develop and use programs that solve real-world

problems. Most of the examples will come from science and engineering,

but the ideas can be applied to any domain.

• We’ll start by teaching you the core features of Python. These features

are included in most modern programming languages, so you can use

what you learn no matter what you work on next.

• We’ll also teach you how to think methodically about programming. In

particular, we will show you how to break complex problems into simple

ones and how to combine the solutions to those simpler problems to create

complete applications.

• Finally, we’ll introduce some tools that will help make your programming

more productive, as well as some others that will help your applications

cope with larger problems.

Online Resources

All the source code, errata, discussion forums, installation instructions, and

exercise solutions are available at http://pragprog.com/book/gwpy3/practical-programming.
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CHAPTER 1

What’s Programming?

(Photo credit: NASA/Goddard Space Flight Center Scientific Visualization Studio)

Take a look at the pictures above. The first one shows forest cover in the

Amazon basin in 1975. The second one shows the same area twenty-six years

later. Anyone can see that much of the rainforest has been destroyed, but

how much is “much”?

Now look at this:

(Photo credit: CDC)
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Are these blood cells healthy? Do any of them show signs of leukemia? It

would take an expert doctor a few minutes to tell. Multiply those minutes by

the number of people who need to be screened. There simply aren’t enough

human doctors in the world to check everyone.

This is where computers come in. Computer programs can measure the dif-

ferences between two pictures and count the number of oddly shaped platelets

in a blood sample. Geneticists use programs to analyze gene sequences;

statisticians, to analyze the spread of diseases; geologists, to predict the effects

of earthquakes; economists, to analyze fluctuations in the stock market; and

climatologists, to study global warming. More and more scientists are writing

programs to help them do their work. In turn, those programs are making

entirely new kinds of science possible.

Of course, computers are good for a lot more than just science. We used

computers to write this book. Your smartphone is a pretty powerful computer;

you’ve probably used one today to chat with friends, check your lecture notes,

or look for a restaurant that serves pizza and Chinese food. Every day,

someone figures out how to make a computer do something that has never

been done before. Together, those “somethings” are changing the world.

This book will teach you how to make computers do what you want them to

do. You may be planning to be a doctor, a linguist, or a physicist rather than

a full-time programmer, but whatever you do, being able to program is as

important as being able to write a letter or do basic arithmetic.

We begin in this chapter by explaining what programs and programming are.

We then define a few terms and present some useful bits of information for

course instructors.

Programs and Programming

A program is a set of instructions. When you write down directions to your

house for a friend, you are writing a program. Your friend “executes” that

program by following each instruction in turn.

Every program is written in terms of a few basic operations that its reader already

understands. For example, the set of operations that your friend can understand

might include the following: “Turn left at Darwin Street,” “Go forward three

blocks,” and “If you get to the gas station, turn around—you’ve gone too far.”

Computers are similar but have a different set of operations. Some operations

are mathematical, like “Take the square root of a number,” whereas others

include “Read a line from the file named data.txt” and “Make a pixel blue.”

Chapter 1. What’s Programming? • 2
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The most important difference between a computer and an old-fashioned

calculator is that you can “teach” a computer new operations by defining

them in terms of old ones. For example, you can teach the computer that

“Take the average” means “Add up the numbers in a sequence and divide by

the sequence’s size.” You can then use the operations you have just defined

to create still more operations, each layered on top of the ones that came

before. It’s a lot like creating life by putting atoms together to make proteins

and then combining proteins to build cells, combining cells to make organs,

and combining organs to make a creature.

Defining new operations and combining them to do useful things is the heart

and soul of programming. It is also a tremendously powerful way to think

about other kinds of problems. As Professor Jeannette Wing wrote in

Computational Thinking [Win06], computational thinking is about the following:

• Conceptualizing, not programming. Computer science isn’t computer pro-

gramming. Thinking like a computer scientist means more than being

able to program a computer: it requires thinking at multiple levels of

abstraction.

• A way that humans, not computers, think. Computational thinking is a

way humans solve problems; it isn’t trying to get humans to think like

computers. Computers are dull and boring; humans are clever and

imaginative. We humans make computers exciting. Equipped with com-

puting devices, we use our cleverness to tackle problems we wouldn’t dare

take on before the age of computing and build systems with functionality

limited only by our imaginations.

• For everyone, everywhere. Computational thinking will be a reality when

it becomes so integral to human endeavors it disappears as an explicit

philosophy.

We hope that by the time you have finished reading this book, you will see

the world in a slightly different way.

What’s a Programming Language?

Directions to the nearest bus station can be given in English, Portuguese,

Mandarin, Hindi, and many other languages. As long as the people you’re

talking to understand the language, they’ll get to the bus station.

In the same way, there are many programming languages, and they all can

add numbers, read information from files, and make user interfaces with

windows and buttons and scroll bars. The instructions look different, but
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they accomplish the same task. For example, in the Python programming

language, here’s how you add 3 and 4:

3 + 4

But here’s how it’s done in the Scheme programming language:

(+ 3 4)

They both express the same idea—they just look different.

Every programming language has a way to write mathematical expressions,

repeat a list of instructions a number of times, choose which of two instruc-

tions to do based on the current information you have, and much more. In

this book, you’ll learn how to do these things in the Python programming

language. Once you understand Python, learning the next programming lan-

guage will be much easier.

What’s a Bug?

Pretty much everyone has had a program crash. A standard story is that you

were typing in a paper when, all of a sudden, your word processor crashed.

You had forgotten to save, and you had to start all over again. Old versions

of Microsoft Windows used to crash more often than they should have,

showing the dreaded “blue screen of death.” (Happily, they’ve gotten a lot

better in the past several years.) Usually, your computer shows some kind of

cryptic error message when a program crashes.

What happened in each case is that the people who wrote the program told

the computer to do something it couldn’t do: open a file that didn’t exist,

perhaps, or keep track of more information than the computer could handle,

or maybe repeat a task with no way of stopping other than by rebooting the

computer. (Programmers don’t mean to make these kinds of mistakes, they

are just part of the programming process.)

Worse, some bugs don’t cause a crash; instead, they give incorrect information.

(This is worse because at least with a crash you’ll notice that there’s a prob-

lem.) As a real-life example of this kind of bug, the calendar program that one

of the authors uses contains an entry for a friend who was born in 1978. That

friend, according to the calendar program, had his 5,875,542nd birthday this

past February. Bugs can be entertaining, but they can also be tremendously

frustrating.

Every piece of software that you can buy has bugs in it. Part of your job as a

programmer is to minimize the number of bugs and to reduce their severity.

In order to find a bug, you need to track down where you gave the wrong

Chapter 1. What’s Programming? • 4
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instructions, then you need to figure out the right instructions, and then you

need to update the program without introducing other bugs.

Every time you get a software update for a program, it is for one of two reasons:

new features were added to a program or bugs were fixed. It’s always a game

of economics for the software company: are there few enough bugs, and are

they minor enough or infrequent enough in order for people to pay for the

software?

In this book, we’ll show you some fundamental techniques for finding and

fixing bugs and also show you how to prevent them in the first place.

The Difference Between Brackets, Braces, and Parentheses

One of the pieces of terminology that causes confusion is what to call certain

characters. Several dictionaries use these names, so this book does too:

Parentheses()
Brackets[]
Braces (Some people call these curly brackets or curly braces, but we’ll

stick to just braces.)

{}

Installing Python

Installation instructions and use of the IDLE programming environment are

available on the book’s website: http://pragprog.com/titles/gwpy3/practical-programming.
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CHAPTER 2

Hello, Python

Programs are made up of commands that tell the computer what to do. These

commands are called statements, which the computer executes. This chapter

describes the simplest of Python’s statements and shows how they can be

used to do arithmetic, which is one of the most common tasks for computers

and also a great place to start learning to program. It’s also the basis of almost

everything that follows.

How Does a Computer Run a Python Program?

In order to understand what happens when you’re programming, it helps to

have have a mental model of how a computer executes a program.

The computer is assembled from pieces of hardware, including a processor

that can execute instructions and do arithmetic, a place to store data such

as a hard drive, and various other pieces, such as a screen, a keyboard, an

Ethernet controller for connecting to a network, and so on.

To deal with all these pieces, every computer runs some kind of operating

system, such as Microsoft Windows, Linux, or macOS. An operating system,

or OS, is a program; what makes it special is that it’s the only program on

the computer that’s allowed direct access to the hardware. When any other

application (such as your browser, a spreadsheet program, or a game) wants

to draw on the screen, find out what key was just pressed on the keyboard,

or fetch data from storage, it sends a request to the OS (see the top image on

page 8).

This may seem like a roundabout way of doing things, but it means that only

the people writing the OS have to worry about the differences between one

graphics card and another and whether the computer is connected to a

network through Ethernet or wireless. The rest of us—everyone analyzing
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Storage Device Screen

Operating System

Applications

scientific data or creating 3D virtual chat rooms—only have to learn our way

around the OS, and our programs will then run on thousands of different

kinds of hardware.

Today, it’s common to add another layer between the programmer and the

computer’s hardware. When you write a program in Python, Java, or Visual

Basic, it doesn’t run directly on top of the OS. Instead, another program,

called an interpreter or virtual machine, takes your program and runs it for

you, translating your commands into a language the OS understands. It’s a

lot easier, more secure, and more portable across operating systems than

writing programs directly on top of the OS:

Storage Device Screen

Operating System

Applications Python Interpreter

Python Program

There are two ways to use the Python interpreter. One is to tell it to execute

a Python program that is saved in a file with a .py extension. Another is to

interact with it in a program called a shell, where you type statements one at

a time. The interpreter will execute each statement when you type it, do what

the statement says to do, and show any output as text, all in one window.

We will explore Python in this chapter using a Python shell.

Chapter 2. Hello, Python • 8
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Install Python Now (If You Haven’t Already)

If you haven’t yet installed Python 3.6, please do so now. (Python 2 won’t do; there

are significant differences between Python 2 and Python 3, and this book uses Python

3.6.) Locate installation instructions on the book’s website: http://pragprog.com/titles/gwpy3/
practical-programming.

Programming requires practice: you won’t learn how to program just by reading this

book, much like you wouldn’t learn how to play guitar just by reading a book on how

to play guitar.

Python comes with a program called IDLE, which we use to write Python programs.

IDLE has a Python shell that communicates with the Python interpreter and also

allows you to write and run programs that are saved in a file.

We strongly recommend that you open IDLE and follow along with our examples.

Typing in the code in this book is the programming equivalent of repeating phrases

back to an instructor as you’re learning to speak a new language.

Expressions and Values: Arithmetic in Python

You’re familiar with mathematical expressions like 3 + 4 (“three plus four”)

and 2 - 3 / 5 (“two minus three divided by five”); each expression is built out of

values like 2, 3, and 5 and operators like + and -, which combine their operands

in different ways. In the expression 4 / 5, the operator is “/” and the operands

are 4 and 5.

Expressions don’t have to involve an operator: a number by itself is an

expression. For example, we consider 212 to be an expression as well as a

value.

Like any programming language, Python can evaluate basic mathematical

expressions. For example, the following expression adds 4 and 13:

>>> 4 + 13
17

The >>> symbol is called a prompt. When you opened IDLE, a window should

have opened with this symbol shown; you don’t type it. It is prompting you

to type something. Here we typed 4 + 13, and then we pressed the Return (or

Enter) key in order to signal that we were done entering that expression.

Python then evaluated the expression.

When an expression is evaluated, it produces a single value. In the previous

expression, the evaluation of 4 + 13 produced the value 17. When you type the

expression in the shell, Python shows the value that is produced.
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